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We construct an iterative algorithm for determining the coefficient of internal 
heat exchange and the effective thermal conductivity of a porous solid on the 
basis of data obtained in temperature measurements. 

Calculating the thermal regime of porous structural elements subjected to the action of 
powerful surface or internal heat sources requires above everything else a knowledge of the 
laws governing the heat exchange on the external surface and inside of the porous structure. 

Experimental studies of heat exchange inside porous materials have been carried out in 
many published works, for example [1-7]. However, as was noted in [7-9], the results ob- 
tained in such studies can be used only after further experimental verification under condi- 
tions corresponding to the real situation, since there is a considerable observed dispersion 
in the experimental data of different authors; this dispersion is due, among other factors, 
to the difference between the methods used to determine the volumetric heat-exchange coeffi- 
cient. The practical importance of this problem means that further investigations in this 
inadequately studied area of heat exchange must be conducted, giving special attention to mak- 
ing sure that the methods of conducting the experiments and processing their results are cor- 
rect. 

The intensive development of the theory and methods of solution of inverse problems in 
heat exchange has led to a considerable expansion of the area of their practical application 
in thermophysical investigations. This principle can also serve as the basis for investigat- 
ing heat exchange in the case of porous cooling [i0]. An important class of such problems 
consists of inverse coefficient problems, in which, within the framework of the selected mathe- 
matical model of the heat-exchange process and with given boundary conditions, we are required 
to find the thermophysical characteristics from the results of temperature measurements at 
several points of the specimen. 

In the present study we consider an inverse problem in the determination of the coeffi- 
cient of internal heat exchange and the effective thermal conductivity of a porous skeleton. 
The results of the investigations carried out by different authors indicate that among the 
quantities determining the value of the coefficient of internal heat exchange, the most im- 
portant ones are the characteristics of the porous medium, the thermophysical properties of 
the coolant, and the intensity with which it is being blown through [7]. Only the blowing 
intensity can be varied during the experiment. The effective thermal conductivity of the por- 
ous skeleton is most affected by the characteristics and the temperature of the porous medium 
[ii]. On the basis of these investigations, we shall try to find the coefficient of internal 
heat exchange as a function of time and to find the effective thermal conductivity, which 
takes account of the transfer of heat in the porous skeleton by conduction and radiation, as 
a function of the solid-phase temperature. If we obtain these functions in such form, we can 
divide the solution of the overall problem into two independent inverse coefficient problems, 
a fact which is especially important when we have one thermocouple on a porous plate. If sev- 
eral thermocouples are set up across the porous plate. It is possible to determine the two 
desired functions simultaneously. We shall consider this general case below. 

It is required to find the vector function {Ts(x, T), %s(Ts), =v(T)} from known nonstationary 
measurements of the temperature of the porous skeleton, knowing the initial distribution of 
the temperatures for the solid and gaseous phases, the law of variation of the coolant flow 
rate as a function of time, the'hydraulic characteristics of the porous plate, and the varia- 
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tion of the thermophysical characteristics of the blown-through gas and of the volumetric 
heat capacity of the porous solid as functions of the corresponding temperature. We shall 
assume that the process of heat exchange in the porous solid can be described by one-dimen- 
sional nonstationary differential equations of heat propagation in the porous skeleton and 
the coolant, whose temperatures differ from each other, and as the boundary conditions for 
calculating the thermal regime of the porous unbounded plane plate O~x~b we use boundary 
conditions of the second kind on its outer surface and of the third kind on its inner surface. 

The mathematical statement of the problem so formulated is the following: 

_ ( OT8 ~ ~O~v(X) ( T . - - T g ) + q v ;  (1) Cs OT~ 0 ~, 

OTg "~ OTg av ('0 IT T 9C,g OTgo.r -- oxO ;~g "--g~x / --  OvCvg ~ + ~ ~ ~ --  g" (2) 

0 < x . <  b, O<z~v~; 

OTs (0, "0 = __ ~o,(T~ (0, ~) - -  T~o); 
Ox 

pvCpgTg (0, q;) = 9vCpgTgo + O~o (Ts (0, '~) -- Tgo); 

(3) 

(4) 

_ )~ aTe(b, "0 .= qw('0; (5) 
Ox 

O~Tg (b, "~) - - -  O; (6) 
OX~ 

T~(x, 0)=~, (x) ,  O ~ x ~ b ;  (7) 

T~ (x, 0) = ~g (x), 0~< x ~ b; (8) 

Ts(xz, x)--/z( 'r),  O ~ x i ~ b .  (9) 

The additional conditions are: 

the equation of state of the gas 

, (I0) p = p ~ 7 g ,  

and the modified Darcy law 

dp _ ~ggv + ~pv 2. (11) 
d x  

The functions qw(~), pv(T), [i(~),~s(X), ~(x), the porosity ~, the hydraulic characteristics 
of the porous solid, and the thermophysical characteristics of the coolant are assumed to be 
given. 

With regard to the condition (6) used in this formulation, we must give an explanation. 
The difficulty is that it is often impossible to measure the temperature of the gas directly 
or to specify the density of the heat flux entering the gas at the external boundary of the 
porous solid. Data obtained by numerical simulation have shown that the calculated results 
found by using the free boundary condition (6) are in good agreement with the results corre- 
sponding to the specification of actual boundary conditions of the first and second kinds. 

Since the stability of the inverse problem formulated above cannot be guaranteed in the 
general case [12], its solution must be regularized in some way. For this purpose we use 
iterative regularization, based on the algorithm of conjugate gradients, with the condition 
that the approximation is stopped according to the discrepancy criterion. 

For the inverse problem (1)-(9) we formulate an extremel statement in the following form: 
we shall seek the vector function R = R(aV(T) , %s(Ts)) that will minimize the mean-squre dis- 
crepancy 
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Tm 

J (av, ~.~) = ~ ITs (xi, T) -- [~ ("c)l 2 d'~ 
i=I 0 

(12) 

under the conditions (1)-(8). When speaking of the minimization functional (12), we shall 
assume that it is minimized with due regard for the limitation of the permissible level of 
discrepancy, which is determined by the errors of the initial data. 

In order to calculate the gradient of the functional (12), which is needed when the gra- 
dient method is used for solving the inverse problem, we shall use the solution of a boundary- 
value problem which is conjugate to the problem when an increment is added to the temperature 
fields in the solid and the gas. 

Regarding the problem (1)-(9) so formulated as a multilayer problem, where the bound- 
aries of layers having identical thermophysical properties coincide with the points of inser- 
tion of the thermocouples, we obtain a formula for the components of the gradient of the func- 
tional with respect to the desired parameters. We shall assume that there is "ideal" contact 
between the layers and that the contact thermal resistances are zero, i.e., the following con- 
ditions are satisfied: 

T~i (xi+l, "~) = T,.;+I (xi+l, "~), 

OT~i (xi+l, "~) OTs~+x (xi+a, "~) 
Ox Ox 

We assume that the components of the desired vector R have been given small increments 
Au V and Als, respectively. The temperatures Tsi and T_ are given small increments zi(x , T) 
and u(x, T) g satisfying in the linear approximation the boundary-value problem: 

a= V 
A%+ u - -  a ( OT~ ~ (13) OCsZi 0 2 (~.sZi) aV (U - -  Zg) -=- OTg (T,i - -  Tg) "~- A)~s ; 

0"~ -- Ox ~ + 1--17 1--17 -~x -~-x / 

00~ V 
AcZv+ u - -  , 

..OpCpgu --. O~(LgU) OV OCpg~ av (u__zi)  _~_. OTg (Ts i - -Tg) ,  x i < x ' < x ~ + l ,  (14) 
Or, Ox 2 Ox I1 17 

O < ' ~ ' v m ,  i =  1, 2 . . . . .  n - - 1 ;  

z~(x, O) = O; (15) 

u(x, O) = O; (16) 

zl (0, "c) OX, OT~I (0, 
OT~ Ox 

"[') - ~ ' S  OZI(0' "[) + A)~ OT,,(O, "c) _ o%z1(0 ' T); (17) 
Ox Ox 

p v ( C p g ~ - ~ T g ( O ,  I ; ) ) . ( 0 ,  T)=(Zoz l (O,  "~); ( 1 8 )  

OZs OTs._ 1 (b, "~) O; (19) ~'s (b, "~) . -k ALs aTs"-ax (b,.~) -k zn-1 aTe- ax = 

O~u ( b , "0 
- -  O, ( 2 0 )  

Ox ~ 

where at the junctions between the layers the following conditions are satisfied: 

az i (Xi+l, ,[) aZi+l (xi+l, ~) - -  , i = 1, 2 . . . . .  n - - 2 ;  ( 2 1 )  
Ox Ox 
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Z i (Xi+l,  T) == Zi+ 1 (Xi+I ,  x).  

F o r  t h e  l i n e a r  p a r t  o f  t h e  i n c r e m e n t  o f  t h e  t a r g e t  f u n c t i o n a l  (12 )  we h a v e  

tt i l  ~ 
AJ(&z v, zX~,)= 2 ~ l G ( x , ,  ~ ) - - k ( ~ ) l z : ( x ,  ~)d*. . i ,~. 

i = 1 0  

We now consider the boundary-value problem conjugate to the system (13)-(20): 

-- C~ O~* >~ - Ox ~ % (%1--i7 17~P ) " 

__9Cvg-&~O~ =he Ox ~0~ + p v C v g ~ +  1 - - H  17 , ~v--~(T~"--Tg)OTg , x i ~ x ~ x i + a ,  

O~T< '~ ,  i =  1, 2 . . . .  , n - - l ;  

,~ (x, ~m) = q~ (X, ~,.) = O; 

(22) 

(23) 

(24) 

(25) 

(26 )  

2[Tsl(O, T)--fl(T)] @r o ~ ax % (o, ~) + ~,~ a ~  (o, ~) 
pv (Cpg_t - OCpg Tg(O, T)) ax 

OTg 

Ox 

cp (o, ~) = o; 

= O; (27)  

; (28) 

(29 )  

q~ (t,, "0 = -  oq~ (b, "0 O; 
Ox 

(30) 

2 [r,~ (x~, "0 -- f, ('01 = )~. [ a~_~ (xi, "0 
L Ox 

O~i (xi, "0 ] i = 2 ,  3 . . . .  n - - l "  (31)  ] 

Then, taking account of (31), 
of the functional: 

$ i - l ( x i ,  "Q = ~ i (x i ,  "0. (32)  

(27), and (21), we obtain for the linear part of the increment 

zXJ-- 

;) =2  " &: 

act (xi, ~) ] 
] Ox 

zi (xi, ~) + X.~ (b, ~) O~,~_~ (b, ~) 
Ox 

,3,1~ (o, T,) z._~ (b, ~) - ~,~z~ (0, ~ ) - . ~  
dx 

- Z.oZ, (0, ~) 
- -  r (0, -~)J I d. = 

~m t n--i ii~1 [ 
,) i 
0 i=:l xi - 

§ c~oz~ (0, ~) [ % (0, ,) - ~g - - - -  

[ 

___ 0 /" &~, ~] 
47 

c2x , 8Tg , , 
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E s  n-l, m �9 i+,zi -~XO . ~o 8 O~Ox dxdw = 7~ .... ~ ~ xi 

i=1 0 x i g = l  0 

E Ozi O,~i ~ = "  ' r 0% 
~x ~x  ' ~" ' u I - -  FI ( T u - r =) -6. 

i = !  0 x i i=l "0 x i 

0 (A~s OTs \ + ~'i-U.-~ - ~ )  dxd~. 
17 . 

Thus 

i = l  ~ i = l  x i  

0% 
S '~oz~ (0, ~) • 

0 

l )~g Oq~ (0, "0 ] 
• ~,(0, "0-- Ox d'~. 

pv (C,g+ OC'gTg(O,~)) 
OTg 

Transforming the resulting expression, taking account of the conditions (32) and 
integrating by parts, taking account of (14), (16), (26), (29), and (30), we find 

r 
x 1 - - / 7  

i = I  O x i 

~ dxd~ + ~ (0, T) ~ AGd~ --  (0, T) 07% 
17 o Ox 

0 0 

(25), and 

(33) 

Since AJ = (Ju', kU)L2, taking account of the fact that a V = aV(T) , we obtain 

_ _  (T=i -- { ~ cP ~' dx. 
Tg) ~ 1 -- H H ) 

i =  1 x l  

(34) 

The expression for the gradient of the functional 3J/3% s depends on the form of the ap- 
proximation of the relation Xs = %s(Ts )" The specificity of the process of heat propagation 
in the porous material consists in the fact that at high temperatures we must take account 
not only of the variation of the thermal conductivity %s of the solid skeleton with tempera- 
ture but also of the additional heat transfer by radiation, which is reflected in the coeffi- 
cient of effective thermal conductivity by the term %R(Ts). Taking account of the fact that 
for small temperature differences between the radiating surfaces, the radiant heat flux is 
proportional to the third power of the temperature of the porous skeleton [Ii], we can ap- 
proximate the temperature-dependent variation of the effective thermal conductivity of the 
porous structure by a third-degree polynomial: 

3 

= 

] = 0  

Here we will have 
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i : I  0 x i 
, ox  / +T{; dxdT ~- 

~tr~ 

0 _ Ox Ox ' 

(35) 

A broader class of functions, widely used in recent years to approximate functional re- 
lations, is represented by B-splines. Therefore, in seeking a function %s(Ts), we used an 
approximation of the desired function by cubic B-splines, as was done in a number of studies, 
for example [13, 14], devoted to the determination of how the thermal conductivity varies with 
temperature: 

m+ l 
~.. (T~) = "~ )~yB~ (T~), (36)  

]= - i  

where the %j are the desired coefficients of the spline and the Bj(Ts) are the B-splines. 

In this case, for the components of the gradient R of the target functional we have 

-- - -  j "tl); dBj (Ts) OTsi q- B; (T~) O2Tsi dxd'~ @ 
Y;~' 0~/ -- i=,o ~ j" .~ dTs~ , c~x Ox - - 7 -  

im[ . . . . . . . . . . .  ] + t~ (0, -c) OT~ Bj (T~) - -  #~'~_~ (b, ~) OT~ Bj (T.~) 
- O x  O x  

d~. 

(37)  

Knowing the values of the gradients of the target functional we construct the process of 
successive approximations on the basis of the method of conjugate gradients [13]. In this 
case the approximations are carried out by the formulas 

p(~+~) = p(~) § ,~(~) O (~) , (38)  

w h e r e  y(s) = {y(@) ?(s)); P : {au, s G(~) tr(~) G~)}; G ( S ) :  _ j , ( ~ )  q_ [3(s)o(s-l); j,(~) sr,(~) d,(S)~. 5,(~> 
' s ; = "t'd~ V '  ~s = l Y a  V ' ~ s  l ,  

i s  t h e  d e p t h  o f  d e s c e n t ;  s i s  t h e  number  o f  t h e  i t e r a t i o n .  

The c h o i c e  o f  d i f f e r e n t  d e s c e n t  s t e p s  f o r  e a c h  c o m p o n e n t  o f  t h e  g r a d i e n t  o f  t h e  f u n c -  
t i o n a l  b e i n g  m i n i m i z e d ,  i . e . ,  t h e  d e t e r m i n a t i o n  o f  t h e  s t e p  v e c t o r  f r o m  t h e  c o n d i t i o n  t h a t  
t h e  t a r g e t  f u n c t i o n a l  mus t  be  a minimum w i t h  r e s p e c t  t o  t h i s  v e c t o r  a t  e ach  i t e r a t i o n ,  a c -  
c o r d i n g  t o  [ 1 5 ] ,  e n a b l e s  us  t o  s p e e d  up t h e  c o n v e r g e n c e  o f  t h e  i t e r a t i v e  p r o c e s s  and r e d u c e  
t h e  i n f l u e n c e  o f  t h e  r e l a t i o n  b e t w e e n  t h e  i n d i v i d u a l  d e s i r e d  q u a n t i t i e s  upon  t h e  r a t e  o f  c o n -  
v e r g e n c e ,  The v a l u e s  o f  t h e  d e s c e n t  s t e p s  a r e  s e l e c t e d  f r o m  t h e  c o n d i t i o n  t h a t  t h e  t a r g e t  
f u n c t i o n a l  (12)  mus t  be  a minimum: 

{E ' rain [T~ (a v -~ 71Aav, ) ~  72A)~) -- ]i (T)] ~ d'~ = 
2 1 ' 7 ~ > 0  i = I  (5 

n ff772 = v,,w>omin { E  [ r , ;  + 7~AT~; (k%)  + yiAT~ (k )~ , ) -  [; (x)l 2 dT }.  (39)  
i = i 0  

In using the given linear approximation for determining y(S), we obtain a system of linear 
equations 

T m 

~ = I  0 i = 1  0 i ~ I  0 

Y~ ~'%" ..i ATsi (A%.) AT~ (Ai~o)._ dT ! ~?z ~ - x_~ 
i : i  0 i = 1  0 f = l  0 

d 
(T~i - -  fi) ATsl (AXs) dT. (40)  
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The iterative process is constructed as follows. We are given the initial values of 
the desired parameters, we solve the direct boundary-value problem describing the process of 
heat exchange in the porous solid when the coolant is blown through, (I)-(8), and we deter- 
mine the temperature fields. After this, using the solution of the conjugate boundary-value 
problem (24)-(30), we calculate the components of the gradient of the target functional. Next 
we solve twice the increment problem (13)-(20), and from the solution of the system of equa- 
tions (40) we determine the values of the descent steps. We calculated the new values of the 
desired parameters by the formulas (38), and we repeat the calculation process. In setting 
up the algorithm, we assumed that if exact initial data are given, the iterative process is 
halted when the desired values in two successive iterations coincide, and if the input data 
are known with some error, the halt is made according to the discrepancy criterion, i.e., the 
number of the last iteration s* is chosen on the basis of the condition 

i = l  0 

[Ts, (xi, "~) -- Ti ('0] 2 d'~ ~ 6 ~', 

n ~m 

where 62= z~ ~ ./ aidT is the estimate of the generalized error of the initial data; oi(T) is 
i = 1 0  

the mean-square deviation of the input temperatures at the points x = x i at time T. 

The above-described algorithm formed the basis for the program set up in Fortran for the 
BESM-6 computer; the differential equations (I), (2), (13), (14), (24), and (25) were approx- 
imated by means of a monotonic implicit difference scheme of second-order accuracy [16]. The 
direct heat-exchange problem in the porous solid was nonlinear, and therefore in solving it, 
at each time step, we carried out iterations with respect to the coefficients of the equa- 
tions, coming out of the iterative process by the condition that the temperature profiles at 
two successive approximations had to coincide to a given degree of accuracy. 

The operational capability of the above algorithm was verified by using model examples 
in the reconstruction of the coefficient of internal heat exchange in a porous solid. Special 
attention was given to the possibility of solving the problem by using measurements made only 
on the outer and inner surfaces, since making temperature measurements inside a porous solid 
is very difficult and often is impossible without disturbing the nature of the coolant flow 
within the porous structure. Thus, the maximum number of measurements made is two. There- 
fore in performing our model calculations, we assumed that the temperature dependence of the 
effective thermal conductivity is given exactly or is determined in advance by an experiment 
which does not include blowing of the coolant (for 0v = 0 the problem of determining %s is 
analogous to the problem given in [13], but with boundary conditions of the second kind). 

It was also assumed that a porous solid 5 mm thick has the following characteristics: 
the variation with temperature, %s(Ts), is described by the formula 

~s = 0 , 1 6 3 8 - 0 , 2 5 6 " I 0 - ~  T+ + 5 . 8 . 1 0  -s  T~ ,  kW/m.K; 

the volumetric heat capacity 

C, = 1.2155 - -  0.984 (T,  - -  273) + 0.00234 (T~ - -  273) 2, kJ/m3 -K; 

the viscous and inertial coefficients of resistance were taken to be 

= 3 , 1 8 . 1 0  tl , 1/rvT, ~ = 8 , 5 - 1 0  6 , l / r e .  

The gas blown through the apparatus was air with a constant input temperature of T~ = 300~ 
~O 

The coefficient of heat exchange at the input was taken to be zero. The heat flux impinging 
on the outer surface of the porous solid wasgiven by the formula 

+ ) kw 
q w =  I000 T + s i n ~  , ~ . 

ra T m  

The rate of air blowing was taken to be variable: 0v = T/100 for 0~Tm/2 , and 0v = 
0.12--(T--Tm/a)/100for T > Tm/2. The duration T m of the experiment was 24 sec. 
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TABLE i. Values of the Desired Parameters and the Functional 

Obtained by Iterations (the exact values of the parameters are 

A = 4 and n = 4) 

~qe~m? Coordi- 
modell nates of t i the ther- 
exam- mocou- 
pie pies 

1 Xl=0, 
x~=,O04, 
x3=,0045 

2 x z = O ,  

x2=,005 

3 xl=O 
x2=,005 

4 xz=,O05 

Initial ap4 
proxlma- | 
tion / 

Iterations 

A~I ,  

>211 4o 
A=I,  
n= l ,  
F=430,7 
A=l ,  
n=l ,  
F=430,7 
A=I ,  
n= l ,  
F=186,6 

1st 

1,365 
2,037 

167,5 
1,352 
1,942 

73,20 
1,234 
1,628 

145,0 
1,244 
1,640 

62,476 

2nd 

i 

2,169! 
3,143 
8,03 
2,079 
2,960 
3,065 
1,654 
2,320 
:0,22 
1,667 
2,319 
9,77 

3rd 

2,987 
3,682 
3,582 
2,936 
3,617 
0,632 
2,226 
2,958 
7,192 
2,215 
2,930 
4,075 

4th 

3,278 
3,757 
0,194 
3,343 
3,789 
0,049 
2,820 
3,430 
1,205 
2,796 
3,388 
0,,799 

5th 6th 

3,468 3,589 
3,859 3,857 
1,920 0,430 
3,492 3,652 
3,849 3,893 
0,247 0,0078 
3,262 I 3,529 
3,685 13,817 
0,1587 I 0,0294 
3,239 I 3,517 
3,660 I 3,803 
0,117 ] 0,0185 

7th 

3,733 
3,944 
1,270 
3,747 
3,9333 
0,1295 
3,672 
3,879 
0,01668 
3,664 
3,869 
0,0055 

TABLE 2. Relative Values of the Functional Obtained by Differ- 
ent Placement of the Thermocouples 

Coor- Iterations 
dina- 
tes of 
the 5th 6th qth 8th 
thermo- 
couples 

x=O 
x = l  
7=0 
x = l  

L i 1st 2nd 3rd 4th 

I I 

0 304 0 07860 01280 001825 
' ' j ' i ' j 

0,335 0,106 0,02070,00429 ] 

0,337 0,0935 0,0167 0,0028 
i l ; 

2,67.10 -4 
6,2- 10 -4 

3,69.10-4 

9,95.10-5 
9,9.10-5 

6,84.10-5 

6,35.10-5 
2,96.10-5 

3,88.10-5 

5,74.10-5 
1,346.10-5 

2,11.10-5 

The values of the coefficient of internal heat exchange were determined from the ex- 
pression 

A Xg ( ~lapv )~ (41)  
~v ' 

where the coefficient A and the exponent n took on different values. 

There are two possible ways to reconstruct the coefficient of internal heat exchange: 

either searching for a large number of discrete values of u V that enabled us to minimize the 
functional (12) with a given accuracy or parametrizing the problem, i.e., searching for val- 
ues of a V in the form of relations of the type (41) (the derivation of these is usually the 
last step in the processing of experimental data [1-7]), when the values of A and n are the 
desired parameters. 

As was shown by the results of the numerical modeling, when the first method is used, 
the iterative process is less sensitive to perturbations in the input data. Among the dis- 
advantages of the first method is the need to obtain a subsequent approximation to the re- 
sults in the form of relations of the type (41), which adds to the error in the final result. 
Therefore attention was given primarily to the second method of determining the coefficient 
of internal heat exchange. 

Table 1 shows the results of the numerical modeling which were obtained with exact input 
data and which illustrate the convergence of the iterative process. As can be seen from the 
results shown (model examples 1 and 2), the linear estimate of the depth of a step for the 
conjugate gradient, as obtained by solving the system of equations (40), does not guarantee 
monotonic convergence. It may be expected that taking account of the third term in the Tay- 
lor expansion will enable us to improve this: 
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rain .( [T,, (~v + ?~Aav, L~ + ?,Ak,) --/~, (~)]' 0x} = 
~ t , y t > O  i = l  0 

71Aav + ?zALs OTs~ min T,~ -~ ?1  0(% V 2 a~, 
"f~,'V~>0 i = 1  

(42) 

1 O~Ts~ } + ~ -  a~ v~ , ~  - ~ (~)]~ a~ . 

Taking account of the fact that We use the following approximation method. 

ATsi(Apj) ~ OT~i 
Opj 

O'Tsz, ( OT~ I-- ( OTs' ]" ) /Apj, 
Ap, and Op 5 ~__.( -~pj ] \--~-pj / 

we write 

O2Ts~ AT, (Api) -- AT, (Ap/) Apj, 
Op~ Ap~ "~ Apj - -  apj 

and we obtain the following system of equations for determining the depth of the step: 

0% T, i+  N ~ AT,u+ 
-- ~ /-~ 2 Ap~ -- Apl. ~=t 0 j=l 

( l ATsih--AT~ ) 
• ATsih-~ 2 Apk--Ap;~ Ap~ d~=0,  k =  1, 2. 

x 

(43) 

The values Ap'j are best chosen to be Apj/2; then the system (43) becomes 

2 

i = 1  0 / = 1  

k = l ,  2. 

=0, 

(44) 

The choice of the yj from the conditions (44) enables us to guarantee monotonic convergence 
of the iterative process (examples 3 and 4 in Table i). 

Table 2 shows the influence of thermocouple placement on the convergence. It can be 
seen that placing a thermocouple on the outer heated surface x = 1 is preferable to placing 
it on the inner surface, since it enables us to obtain a lower value of the functional after 
the same number of iterations. 

In the course of real experiments the temperature measurements always involve some error 
of a random or systematic nature; therefore, in order to verify the operational capability of 
the above algorithm under real conditions on the temperature values that play the role of mea- 
surements, during some model calculations we imposed random perturbations which followed a 
normal distribution law. It was found that in order to solve the problem with perturbed data, 
we first had to edit the real measurements, for example by smoothing the experimental data, 
or plan the experiments with a view to indicating the regimes of maximum sensitivity of the 
functional to the desired parameters. The reason for this is that in some regimes, after we 
have selected the initial approximation for the desired parameters, the values obtained by 
solving the direct problem (1)-(8) for the temperatures at the points of fixation of the ther- 
mocouples will immediately fall in the tube of admissible values, and the determination of the 
direction of descent therefore has a more or less random character. 

On the whole, the mathematical verification showed that the above-described approach is 
effective in determining the coefficients of heat exchange in a porous solid. 

NOTATION 

x, coordinate; b, thickness of the porous body; n, number of measurements of the tempera- 
ture of the porous body; Cs, Xs, volumetric heat capacity and effective thermal conductivity 
of the porous body; P, C , %, density, specific heat, and thermal conductivity of the blown 
gas; T, temperature of t~e porous skeleton and the gas; aV, coefficient of internal a heat 
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exchange; pv, rate of blowing; T, time; T m, duration of experiment; p, pressure; M, molecular 
weight of the gas; e, B, coefficients of hydraulic resistance of the porous body; @, @ , conjugate 
variables; qw, heat flux into the wall at the outer boundary; ~, porosity; ao, coefficient of 
heat exchange at the inlet to the porous body; qv' intensity of internal heat generation; s, 
g, indices corresponding to the solid and gaseous phases; H, viscosity. 
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